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SUMMARY

The equations governing the �ow of a viscous �uid in a two-dimensional channel with weakly modu-
lated walls have been solved using a perturbation approach, coupled to a variable-step �nite-di�erence
scheme. The solution is assumed to be a superposition of a mean and perturbed �eld. The perturbation
results were compared to similar results from a classical �nite-volume approach to quantify the error.
The in�uence of the wall geometry and �ow Reynolds number have extensively been investigated. It
was found that an explicit relation exists between the critical Reynolds number, at which the wall �ow
separates, and the dimensionless amplitude and wavelength of the wall modulation. Comparison of the
�ow shows that the perturbation method requires much less computational e�ort without sacri�cing
accuracy. The di�erences in predicted �ow is kept well around the order of the square of the dimen-
sionless amplitude, the order to which the regular perturbation expansion of the �ow variables is carried
out. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Viscous �ow in a micro-channel with modulated walls is a classical problem that has at-
tracted renewed interest because of its immediate relevance to novel micro-technologies, for
example, compact heat exchangers with high heat �ux or membrane blood oxygenators in
extra-corporeal systems [1]. In spite of the apparent geometrical simplicity, these �ows can
contain separated �ow regions and exhibit many of the features present in much more complex
geometries, which can signi�cantly impact heat or mass transfer performance. This richness
in physical phenomena in a relatively simple geometry motivates fundamental interest by
providing an ideal setting for developing and testing the accuracy and e�cacy of numerical
procedures to solve of the Navier–Stokes equations.
Stephano� et al. [2] were among the �rst to experimentally investigate the two-dimensional

steady, unsteady, and oscillatory �ow in a furrowed channel at low Reynolds numbers for a

∗ Correspondence to: R. E. Khayat, Department of Mechanical and Materials Engineering, The University of Western
Ontario, London, Ontario, Canada N6A 5B9.

† E-mail: rkhayat@eng.uwo.ca

Contract=grant sponsor: Natural Sciences and Engineering Council of Canada

Received August 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised November 2001



1140 H. ZHOU ET AL.

modelled Oxford membrane blood oxygenator. Their work provided some qualitative support
for the numerical model proposed by Sobey [1], based on a streamline–vorticity formulation. A
further contribution to the �ow characteristics in modulated channels was given by Nishimura
et al. [3], who performed measurements in the Reynolds number range 40–10 000 to observe
the steady �ow characteristics in a channel with symmetric wavy walls and provided an
empirical relationship between wall shear stress and �ow Reynolds number. Later, Nishimura
et al. [4] performed another experimental investigation focusing on mass transfer from a
channel with symmetric sinusoidal walls or arc-shaped walls.
Several numerical studies exist for the prediction of low-Reynolds-number �ow in wavy

channels. These can be broadly categorized as those dealing with heat=mass transfer charac-
teristics, which necessarily focus on a narrow range of geometrical parameters [4–7], or on
hydrodynamic simulations [1–3; 8–12]. These studies have focused on the steady-state be-
haviour. The unsteady non-isothermal �ow was considered by Wang and Vanka [13]. Of the
latter, much e�ort has been dedicated to developing solution techniques or suitable formula-
tions for the problem. The techniques either consist of solving the Navier–Stokes equations or
solving a perturbation problem either in terms of primitive or streamline–vorticity variables.
The advantage of the perturbation approach is that it can be much faster than a full simulation,
but, due to the truncation inherent in the method, is subject to larger uncertainties. There is,
however, little literature dedicated to quanti�cation of the accuracy or comparison of di�erent
techniques.
The existing numerical techniques can be divided into three categories depending on the

formulation of the physical domain. In a �rst approach, the modulated �ow domain is mapped
onto a rectangular computational domain to simplify the boundary conditions and to facilitate
the integration process [14]. Benjamin [8] considered a co-ordinate system based on stream-
lines of inviscid �ow over a wavy wall in his analysis of shear �ow over wavy walls. Sobey
[1] analysed the �ow through furrowed channels and used an analytical mapping resulting in a
non-orthogonal co-ordinate system. Caponi et al. [15] employed an orthogonal transformation
expressed in terms of an in�nite Fourier series in their analysis of boundary layers over modu-
lated surfaces. Tanda and Vittori [5] carried out the investigation of �uid �ow and heat transfer
in a two-dimensional wavy channel by using another non-orthogonal transformation [6].
In a second approach, the problem is solved directly in the physical domain such that

the governing equations retain a very simple form. However, one has to develop special
procedures for the imposition of boundary conditions. The most popular procedure is following
a perturbation method, which involves the transfer of boundary conditions to a certain mean
location of the boundary, resulting in a regular computational domain [9]. The accuracy of this
approach depends on the amplitude of the modulation and the type of boundary conditions
transfer procedure. This method is of interest due to its simplicity and due to the fact that
in many applications, the interest lies in small modulation where the perturbation method
provides reasonable accuracy. Vajaravelu and Kharagpur [7] applied this perturbation method,
carrying out a numerical study of �ow through weakly modulated wavy channels. Selvarajan
et al. [10] adopted the same method studying stability characteristics of wavy walled channel
�ow. An accurate spectral approach has also been implemented by Deane et al. [16] to
simulate the �ow inside converging–diverging channels. Szumbarski and Floryan [17] also
developed a direct spectral method for the determination of �ows over corrugated boundaries.
They, however, treat the �ow problem as an internal rather than a boundary-value problem,
where the �ow conditions are speci�ed along a line in the interior of a computational domain.
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A third approach is the combination of the above two approaches. By taking advantage
of the mapping approach, one also adopts the essence of the perturbation method to reduce
the complicated transformed governing equations into a set of ordinary di�erential equations
subject to simple boundary conditions. Tsangaris and Leiter [11] performed a study on laminar
steady �ow in sinusoidal channels by this method. Selvarajan et al. [12] also employed this
method to investigate the �ow through wavy- walled channels. As stated before, the accuracy
of this approach depends on the amplitude of the modulation.
Finally, it is also worth mentioning some of the studies conducted on unsteady �ow. Guz-

man and Amon [18; 19] carried out a direct three-dimensional numerical simulation in a fully
developed periodic regime for a uniform heat �ux density at the bottom wall; the top wall was
assumed to be adiabatic. Beyond a critical Reynolds number, they showed the existence of
an unsteady periodic behaviour with higher harmonics. As the Reynolds number is increased
further, a quasi-periodic behaviour is observed, with two incommensurable frequencies (torus
T2). The �ow eventually exhibits chaotic behaviour. The onset of unsteady motion is in accord
with the linear stability analysis of Blancher et al. [20].
The present paper aims to correct two apparent de�ciencies gleaned from the above litera-

ture review. First, there has not been a systematic investigation of the uncertainty of results
obtained with the perturbation method. Second, the in�uence of the channel modulation ampli-
tude, �, and wavelength, �, on the critical Reynolds number for the appearance �ow reversal
has been studied only over a very small range. Thus, in the �rst part of the paper, the error
resulting from a perturbation analysis is investigated in terms of � and the wall wave number,
�=2�=�. Since results for experiments with �¡0:3 still do not �nd a consensus [11], results
will be benchmarked against results obtained from a traditional �nite-volume formulation.
The hydrodynamic features of steady �ow in modulated channels will then be described in a
systematic and coherent way. In the following section, the problem formulation and solution
procedure are described. The third section introduces the numerical assessment. In the fourth
section, the present �ndings, expressed in terms of Reynolds number, dimensionless amplitude
and wall wave number are discussed. Some conclusions are drawn in the last section.

2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

In this section, the general equations and boundary conditions for the Poiseuille �ow with
spatially modulated walls are derived for small-amplitude modulation. A regular perturbation
expansion for the �ow �eld is carried out after the equations are mapped over a rectangular
domain, reducing the problem to a set of ordinary di�erential equations, which will be solved
using a variable-step-�nite-di�erence scheme.

2.1. Governing equations

Consider the steady-state �ow of an incompressible Newtonian �uid of constant density �
and viscosity �. The �uid is assumed to lie between two in�nite rigid boundaries, the lower
being straight and the upper being periodically modulated. The problem is �rst introduced in
the (X; Y ) plane, with the X -axis being located along the lower wall. The general shapes of
the lower and upper walls are given by Y =0 and D + Af(X ), respectively, where A is the
modulation amplitude, and D is the mean gap width. Here f(X ) is a general function of X
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that may be arbitrarily prescribe. In this work, however, only a sinusoidal modulation will be
considered.
The general conservation of mass and linear momentum equations are given by

∇·U=0 (1a)

�U · ∇U= �∇2U −∇P (1b)

where U(U;V ) is the velocity vector, P is the pressure and ∇ is the gradient operator. The
�uid is assumed to adhere to the rigid walls, and the no-slip boundary conditions are written
as

U (X; Y =0)=U (X; Y =D+ Af)=0 (2)

The dimensionless co-ordinates, x and y, velocity components u and v and the pressure p,
are introduced as follows:

x=
X
D
; y=

Y
D
; u=

U
Umax

; v=
V
Umax

; p=
DP
�Umax

(3)

where Umax is the maximum velocity corresponding to an equivalent linear pressure gradient
imposed on the Poiseuille �ow between two �at plates coinciding with the mean heights of the
modulated walls. After the dimensionless variables are introduced, two dimensionless groups
emerge in the problem, namely, the Reynolds number and the aspect ratio �:

Re=
�UmaxD
�

; �=
A
D

(4)

The governing equations become

ux + vy =0 (5a)

Re(uux + vuy) = uxx + uyy − px (5b)

Re(uvx + vvy) = vxx + vyy − py (5c)

where a subscript denotes partial di�erentiation. The above equations must be solved subject
to the no-slip condition

u(x; y=0)= u(x; y=1+ �f(x))= v(x; y=0)= v(x; y=1+ �f(x))=0 (6a)

It is further assumed that the �ow �eld (velocity and pressure) is spatially periodic, commen-
surately with the wall modulation. This periodicity condition is written as

u(x=0; y) = u(x=2�=�; y)

v(x=0; y) = v(x=2�=�; y)

p(x=0; y) = p(x=2�=�; y)

(6b)
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Figure 1. Physical domain and �ow con�guration for spatially modulated channel.

where � is the dimensionless wave number of the wall modulation. The problem (5)–(6)
is de�ned over the physical domain �xy= {(x; y) | x∈ [0; 2�=�]; y∈ [0; 1 + �f(x)]}, which is
next mapped onto the rectangular domain. The physical domain and �ow con�guration are
schematically illustrated in Figure 1.

2.2. Domain transformation

The periodic physical domain �xy is mapped onto the rectangular domain ���= {(�; �) | �∈
[0; 2�=�]; �∈ [0; 1]}. In this case

�(x; y)= x; �(x; y)=
y
h(x)

(7)

where h(x)=1 + �f(x) is the dimensionless gap. Now the transformed equations read,

u� − �h′

h
u� +

1
h
v�=0 (8a)

Re
[
u
(
u� − �h′

h
u�

)
+
vu�
h

]
=−p� + �h

′

h
p� +

u��
h2

+ u�� − �
[(
h′′

h
−
(
h′

h

)2)
u� +

h′

h
u��

]

− �h
′

h

(
u�� − �h′

h
u�� − h′

h
u�

)
(8b)
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Re
[
u
(
v� − �h′

h
v�

)
+
vv�
h

]
=

−p�
h
+
v��
h2

+ v�� − �
[(
h′′

h
−
(
h′

h

)2)
v� +

h′

h
v��

]

− �h
′

h

(
v�� − �h′

h
v�� − h′

h
v�

)
(8c)

where a prime denotes total di�erentiation. The boundary conditions are

u(�; �=0)= u(�; �=1)= v(�; �=0)= v(�; �=1)=0 (9a)

u(�=0; �) = u(�=2�=�; �)

v(�=0; �) = v(�=2�=�; �) (9b)

p(�=0; �) =p(�=2�=�; �)

The solution to Equations (8) is sought subject to conditions (9). This is a di�cult non-linear
two-dimensional problem, with variable coe�cients in the governing equations. There are,
however, some limit �ows that may be considered, which can simultaneously be of practical
and fundamental signi�cance.

2.3. The perturbation expansion

In this work, only small-amplitude modulation is examined, so that � is small (� � 1). A
regular perturbation expansion is used on the velocity and pressure:

u= u0 + �u1 +O(�2); v= v0 + �v1 +O(�2); p=p0 + �p1 +O(�2) (10)

where terms of O(�2) and higher are neglected. Substitution of expressions (10) into Equa-
tions (8) and conditions (9) leads to a hierarchy of equations and boundary conditions that
must be solved to each order in �. Thus, to leading order in �, one recovers the equations
encountered in conventional Poiseuille �ow. Correspondingly, the solution is given by

u0 = 4�(1− �); v0 = 0; p0� =− 8 (11)

The equations to O(�) become

u1� + v
1
� = u

0
��f

′ (12a)

Re(u0u1� − u0�f′u1� + u
0
�v
1) + p1� − u1�� − u1�� =−2u0��f − u0��f′′ (12b)

Re u0v1� + p
1
� − v1�� − v1�� =0 (12c)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1139–1159



FLOW IN WEAKLY MODULATED CHANNELS 1145

which must be solved subject to

u1(�; �=0)= u1(�; �=1)= v1(�; �=0)= v1(�; �=1)=0 (13a)

u1(�=0; �) = u1(�=2�=�; �)

v1(�=0; �) = v1(�=2�=�; �) (13b)

p1(�=0; �) =p1(�=2�=�; �)

Note that the second expression in (11) has been used.

2.4. Solution procedure

At this point, it is necessary to introduce explicitly the modulated wall pro�le f. Various
con�gurations may be easily incorporated in the general formulation above. For instance,
both walls could be assumed to be modulated, and the modulation can be represented by a
general Fourier series, as long as it is smooth. In this work, however, only the upper wall is
assumed to be modulated in the form of a sine wave such that

f(�)= sin(��) (14)

where � is the (dimensionless) wavenumber. In this case, the general solution of Equa-
tions (12) is given as

u1(�; �) = u11(�) sin(��) + u12(�) cos(��)

v1(�; �) = v11(�) sin(��) + v12(�) cos(��)

p1(�; �) = p11(�) sin(��) + p12(�) cos(��)

(15)

where u11; u12; v11; v12; p11 and p12 are unknown coe�cients. It is important to observe that,
it is the linear nature of Equations (12) that allows the solution to be expressed as in (15),
which may then be regarded as the most general solution. If, for instance, the wall assumes
other forms than sinusoidal, then additional modes must be included. Substituting the above
expressions into Equations (12), the governing equations for the coe�cients become

u11�+ v12� = �u0��

−u12�+ v11� = 0

p11�+ Re(u0u11�+ u0�v
12 − �u0u0��) + �2u12 − u12�� = 0

−p12�+ Re(−u0u12�+ u0�v11 − �2u0��+ 2u0��) + �2u11 − u11�� = 0

p12� �+ Re u
0v11�+ �2v12 − v12�� = 0

p11� �− Re u0v12�+ �2v11 − v11�� = 0

(16)

The system above is a set of non-homogeneous ordinary di�erential equations, which together
with the corresponding homogeneous boundary conditions

u11 = u12 = v11 = v12 = 0 at �=0 and �=1 (17)
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constitute a boundary-value problem of the two-point type. It is solved using a variable-step
�nite-di�erence scheme (IMSL-DBVPFD). The basic discretization is the trapezoidal rule over
a non-uniform mesh. This mesh is chosen adaptively, to make the local error approximately
the same size everywhere. Higher-order discretizations are obtained by di�ered corrections and
global error estimates are produced to control the computation. The linear system of equations
is solved using a special form of Gauss elimination that preserves sparseness.

3. NUMERICAL ASSESSMENT

A review of the literature shows that the limitations and advantages of perturbation methods
in predicting �ows in weakly modulated channels have not been rigorously investigated. Since
the present method is intended to provide a fast and accurate alternative to conventional CFD
calculations in the limit of small modulation amplitudes, establishing the accuracy of the
solution is critical. In this section, a detailed study of the in�uence of geometric parameters
and Reynolds number on solution accuracy and a comparison to �nite-volume predictions is
provided.
Error sources are in the truncated terms of the governing equations. These terms contain

combinations of the velocity gradients multiplied by coe�cients containing the parameters �,
� and Re. Assuming that the (dimensionless) velocity gradients are of order 1, the error in the
perturbation method should scale with the higher-order coe�cients of order �2 and ��2. The
in�uence of the truncated terms on the continuity equation is conveniently summarized through
the global error in mass conservation, since only the mean pressure gradient is imposed in the
solution procedure. In general, mass is not conserved, and the volume �ow rate, Q(x), varies
(locally) with x. This variation is typically illustrated in Figure 2, where the streamwise
dependence of the predicted volume �ow rate is shown for several values of �; �=1 and

Figure 2. Streamwise variation of the predicted volume �ow rate for Re=3000 and �=1:0.
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Figure 3. Maximum error for mass conservation, �, as a function of the wall modulation,
�. Calculations show that the in�uence of the modulation wavenumber and inertia on the

error is essentially absent. The curve in the �gure is essentially universal.

Re=3000. The �uctuation in Q(x) is in phase with the wall modulation, and this �uctuation
increases with modulation amplitude, �. The maximum in Q, however, remains the same,
corresponding to Poiseuille �ow (Q= 2

3). The �ow rate that is averaged over a modulation
wavelength, Qave, is then considered as the exact value for Q, and the di�erence Q −Qave is
then taken as a measure of inaccuracy. This average decreases with �. The �gure indicates
that the maximum error occurs at the crests and troughs of the modulation wave of the wall,
and is zero at the in�ection points, where y=1, which is expected since the truncated terms
are multiplied by the sinusoidal waveform. The global error at a given streamwise location
may then be de�ned as

�=
|Q −Qave|max

Qave
(18)

The in�uence of � on the maximum error is shown in Figure 3. The in�uence of the wavenum-
ber of the wall modulation and inertia on the overall error is negligible. This observation is
based on calculations for the ranges 0:1¡�¡100 and 50¡Re¡5000. It is expected that these
two parameters contribute little to � since truncation with respect to � only is imposed. As
expected, the error behaves like �2 and conservation of mass is satis�ed to within 1% for
�¡0:15.
A more rigorous validation of the perturbation solution follows from direct comparison

with simulation results obtained using a CFD code based on the �nite-volume discretization
procedure [21]. The �nite-volume code developed by El-Soukkary includes special periodic
boundary conditions that allow for the imposition of a mass �ow rate, which makes the
computation more straightforward when a speci�c �ow Re is desired. Thus, for the present
computations, periodic conditions were imposed at the inlet and outlet, with the additional
constraint of a mass �ow rate. No-slip and zero-penetration conditions were imposed on the
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Figure 4. Comparison of the variation of the (linear) pressure gradient with Reynolds
number for �=0:1 and �=1:0. Inset shows the log–log plot.

upper and lower walls. To ensure that the �nite-volume predictions were independent of the
spatial step size, a grid-independence study was carried out for the case of �=1, �=0:1
and Re=3000 (the highest Reynolds number considered in this study). The grid density was
progressively doubled until the results were grid-converged to within 1%; results presented in
this study were computed on grids of 160× 100 cells.
For comparison between the perturbation and �nite-volume methods, the driving (linear)

pressure is �rst imposed, and the perturbation solution yields a mass �ow rate, which, in turn
is used in the CFD code to generate the �ow �eld. Simultaneously, a linear driving pressure
is also generated by the code, which is compared against the original imposed pressure used
for the perturbation method. The comparison is typically illustrated in Figure 4, which clearly
shows close agreement between the two methods. The pressure gradient is plotted against Re
for �=0:1 and �=1. The log–log plot indicates, upon ampli�cation, more clearly the level of
discrepancy between the two methods. The relative error is usually found to be on the order
of a few per cent.
The mean �ow patterns obtained using the two methods are very similar as seen, for exam-

ple, from the streamline plots of Figure 5 for Re=3000, �=0:1 and �=1. The streamlines are
de�ned as iso-contours of the streamfunction obtained by integrating the streamwise velocity
component from the lower wall. To maintain consistency in the streamfunction de�nition be-
tween adjacent streamwise locations, the small error of order �2 on the mass �ow is corrected
by normalizing the entire pro�le by the local mass �ow. The resulting streamline patterns are
qualitatively indistinguishable from those of the �nite-volume simulation.
Quantitatively, the more sensitive parameters are the critical Reynolds number for separa-

tion, the location of the separation and reattachment points. Typical predictions using both
methods are summarized in Table I. Di�erences in the prediction of the separation point
di�er by less than 1% and are thus of order �2. However, di�erences in the predictions of
the reattachment point are much larger, of the order of 5% (order �) and increase as Re
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Figure 5. Comparison of mean �ow patterns and u-contours based on the �nite-volume
(a, b) and the perturbation (c, d) methods for Re=3000; �=0:1 and �=1.

Table I. Variation in separation and reattachment points with Reynolds number (�=0:1; �=1:0).

Re FVM separation PM separation Error FVM PM Error
point point (%) reattachment reattachment (%)

point point

2500 6.527 6.503 0.37 8.133 7.885 3.05
3000 6.387 6.377 0.16 8.377 7.948 5.12
3500 6.283 6.314 0.50 8.482 8.011 5.56

increases. The corresponding u-contours are also shown in Figure 5, which also re�ect close
agreement. However, a better quantitative assessment is obtained by comparing the stream-
wise velocity pro�les based on the �nite-volume and perturbation simulations at a given
location. This comparison is shown in Figure 6 for Re=3000 and �=0:1. The locations,
x= �=2 and �, coincide, respectively, with a crest and a trough, where the error is greatest.
The �gure shows the y-distribution of the total streamwise velocity component, u, and the
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Figure 6. Streamwise velocity distribution (a) below the crest at x= �=2, and (b) below the
trough at x= �, for Re=3000; �=0:1 and �=1. The �gure shows the distributions based

on the �nite-volume and perturbation methods.

perturbation contribution, u1. The perturbation component di�ers from the CFD simulation re-
sults by an order �. The overall solution is consequently accurate to within �2. It is noteworthy
that the trend in u1 is correctly predicted at all points and the error is in the magnitude. In
other words, the location of the critical points in the pro�le, speci�cally zero stress, extrema
and in�ection points, are all correctly predicted. As a result, the predicted critical Reynolds
number, i.e. when �ow separation �rst appears, by both methods coincides. The predicted
streamwise pressure evolution is shown in Figure 7 for �=0:1 and �=1. The pressure at
each streamwise location is computed as an area-weighted pressure, and thus corresponds to
that pressure required to exert an equivalent force at that location. The di�erence in prediction
between the �nite-volume and perturbation results is of the order of �, approximately 5%, and
is typical for all tests conducted. These results are consistent with the general formulation.
By inspection, the leading truncation term for u1 is of order �, cf. Equation (12a) and thus,
from Equation (12b), the pressure gradient will also be accurate to order �.
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Figure 7. Average �uctuating pressure distribution for Re=3000; �=0:1 and �=1. The
�gure shows the distributions based on the �nite-volume and perturbation methods.

The limitations of the proposed perturbation simulation have been quanti�ed based on the
error source and validated by comparison from �nite-volume simulations. The error on the
velocity �eld increases with �2 and is nearly una�ected by � in the range 0.1–100. The error in
predicting pressure gradients is of the order of �. This error is su�cient to cause di�erences
between the �nite-volume and perturbation methods of 5% in predictions of macroscopic
features such as recirculation bubble lengths. Over the range Re=50–5000, the Reynolds
number does not a�ect the steady-state �ow �eld structure qualitatively, but error in the
location of critical points, such as reattachment, does double over this range.
Finally, it is important the issue of CPU and storage requirements is important to address

whenever a comparison between two numerical methods is made. For the current study,
however, both the perturbation and the �nite-volume codes used in the comparison are in-house
codes. It should, on the other hand, be clear that the requirements for the perturbation method
are practically nil (seconds in CPU for a typical problem), when the code is executed on a
modern PC. The �nite-volume code requires typically hours in CPU for the same problem.

4. RESULTS AND DISCUSSION

In this section, results are presented in an e�ort to elucidate some of the intricate physical
behaviour that emerges in the �ow inside modulated channels. Although some results are
already available from the literature, there is yet a need for a systematic investigation of
the in�uence of the various parameters on the �ow. In particular, the in�uence of inertia,
modulation amplitude and wavelength will be examined by varying Re; � and �, respectively.
The in�uence of inertia is re�ected in Figures 8 and 9, which depict the behaviour for

�=0:2 and �=1, for low-inertia (Re=50) and high-inertia (Re=2000) �ows,
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Figure 8. Typical response of a �ow at low inertia (Re=50). The �gure displays the
streamlines (a), the contours of the steamwise (b) and transverse (c) velocity components,

and the pressure (d). Here �=0:2 and �=1.

respectively. These two cases illustrate the typical behaviours in the pre- and post-critical
ranges of Reynolds number. Each �gure shows the streamlines, the contours of the velocity
components in the streamwise and depthwise directions, and the contours of the pressure de-
viation, p1. The same scales are used in both �gures for clarity of comparison. The vortex
in Figure 9(a) occupies a signi�cant portion of the �ow below the crest. There is a loss of
symmetry (with respect to x=�=0:5) in the streamlines, which is also re�ected in the �ow
variables, particularly in the u contours. Figures 8(b) and 9(b) indicate that the (dimension-
less) maximum streamwise velocity occurs below the trough, which is expected given the
relatively strong contraction. The separation causes the velocity to weaken (by about 10%
in this case), and the maximum is even more localized below the trough. Other signi�cant
topological changes are observed just below the crest because of �ow separation. Despite the
apparent signi�cance of the back�ow, the magnitude of the velocity in the reverse direction
is only 10% of the maximum in u. The �ow in the depthwise direction in Figure 9(c) also
weakens (relative to Umax), but remains essentially symmetric as in Figure 8(c). However, the
region of maximum v tends to widen because of the separation, indicating a smaller gradient.
As to the pressure �uctuation, Figures 8(d) and 9(d) show that p1 exhibits a minimum below
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Figure 9. Typical response of a �ow at high inertia (Re=2000). The �gure displays the
streamlines (a), the contours of the streamwise (b) and transverse (c) velocity components,

and the pressure (d). Here �=0:2 and �=1.

the trough and a maximum below the crest, which are of the same magnitude. The regions of
extrema extend further down in the absence of separation. The pressure varies almost linearly
with x between the two extrema. As would be expected, the streamwise pressure gradient is
much higher for the separated �ow case.
The streamwise variation in the shear stress, 	w, at the modulated wall is shown in Figure 10

for the range Re ∈ [500; 3000]; �=0:1 and �=1. The onset of back�ow corresponds to 	w
switching sign. In this case, separation occurs at Re slightly below 1500. It is observed that
the variation in shear stress is periodic with respect to x, but is out of phase with the variation
in wall shape. The amplitude of 	w increases with Re. Since the �ow in two-dimensional and
the wall is rigid, the separation and reattachment points are the locations where 	w is zero. For
Re (roughly) below 1500, the shear stress variation is negative, and the �ow remains attached.
For Re=2000, a separated �ow region on the channel wall exists. The value of the Reynolds
number for which the �ow just separates is often referred to as the critical Reynolds number
[11; 12]. Figure 11 displays the in�uence of inertia on the pressure �uctuation, p1w, along the
modulated wall, for the same parameters as in Figure 10. It is interesting to observe that the
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Figure 10. In�uence of inertia on the shear-stress distribution at the
modulated wall for �=1 and �=0:1.

Figure 11. In�uence of inertia on the pressure distribution at the
modulated wall for �=1 and �=0:1.

level of pressure �uctuation decreases as Re increases. The results above are in accord with
the predictions of Selvarajan et al. [11].
The in�uence of the modulation amplitude, �, on the location of the points of separation

and reattachment as function of the Reynolds number is illustrated in Figure 12 for �=1
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Figure 12. In�uence of wall modulation amplitude on the locations of separation and
reattachment points against the Reynolds number, for � ∈ [0:1; 0:175] and �=1.

and the range 0:16�60:175. Note that case �=0 corresponds to Poiseuille �ow, where no
separation occurs. At a given Re, the separation point lies to the left, and the reattachment
point lies to the right. Typically, for a given �, a critical Reynolds number, Rec, is needed
for separation to occur. For instance, Rec = 1300 for �=0:1. As Re increases above Rec, the
size of the vortex increases until the vortex spans the entire period of the modulation. For
small �, the Re vs x curve is narrow, exhibiting a strong minimum, from which Rec is readily
identi�ed. In contrast, for large �, the curve tends to �atten, re�ecting a weak minimum. Thus,
for strong modulation amplitudes, even a slight increase of Re above Rec leads to the onset
of a relatively large vortex. If � is increased further, a critical value, �c, is reached at which
separation occurs at a vanishingly small Reynolds number.
The in�uence of the modulation wavenumber, �, can be signi�cant. The overall in�uence

of the modulation wave number, �, is illustrated in Figure 13, where the positions of the
separation and reattachment points are plotted against Re for �=0:1. From this �gure, it is
seen that � has a marked e�ect on the �ow character. Physically, however, the in�uence
of this parameter is less marked than that of �. For instance, the critical Reynolds number
decreases from 1300 to 400 as the length of the modulation is reduced by a factor of two (�
increases from 1.0 to 2.2). On the other hand, the critical Reynolds number decreases from
1300 to 400 when � increases from 0.1 to 0.175, i.e. when the channel maximum-to-minimum
width ratio changes by only 6.8% from 1.1 to 1.175.
The value of the critical Reynolds number, Rec is probably the most important threshold

parameter in the problem. Figure 14 shows the variation of Rec with the wall amplitude, �,
for various values of � ∈ [0:6; 2:2]. Further analysis of the simulation results shows that, for
sinusoidal wall modulations, an explicit universal and functional relationship between Rec; �
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Figure 13. In�uence of wall modulation wavenumber on the locations of separation and
reattachment points against the Reynolds number, for � ∈ [1; 2:2] and �=0:1.

Figure 14. In�uence of the wall modulation wavenumber on the critical
Reynolds number, Rec, against the modulation amplitude, �, for � ∈ [0:6; 2:2].

Symbols indicate the �t from Equation (19).

and � exists, which is given by

Rec = 3:9�−2:5�−2 (19)
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Figure 15. In�uence of the wall modulation amplitude on the criti-
cal Reynolds number, Rec, against the modulation wavenumber, �, for

� ∈ [0:075; 0:125]. Symbols indicate the �t from Equation (19).

The symbols in Figure 14 show the �t of this formula for each curve. The formula shows that
the occurrence of separation will depend on the local streamwise pressure gradient and the
local wall curvature. Sobey [1] suggested the possible existence of such a relationship. His
results indicated a relationship of the type �−3�−1. However, his parameter domain covered
a very small range of � and �. The relationship of Equation (19) is valid over a larger
domain of parameter values. Typically, Rec decreases dramatically with wall amplitude when
� is small. As � increases further, the drop in Rec becomes less pronounced. In fact, there is
an asymptotic decrease toward the zero limit. The drop is sharper and convergence (toward
zero) is faster as � increases. A similar behaviour is observed when Rec is plotted against the
modulation wave number. The in�uence of wall wavenumber is inferred from Figure 15.
There is, �nally, an additional quantity that is worth examining, namely the average volume

(or equivalently mass) �ow rate, Qave, through the modulated channel. It is expected that the
�ow experiences a loss as a result of wall modulation, under the same driving conditions due
to energy losses at the wall. Figure 16 shows the dependence of Qave on �. There does not
seem to be a particular behaviour that the curve follows. Other parameters, particularly Re
and � do not have a signi�cant in�uence on the volume �ow rate. There is, however, a slight
loss of volume rate at small �, which is not detected in the �gure.

5. CONCLUSIONS

The validity of the perturbation approach for the prediction of �ow behaviour inside a channel
with weak spatial modulation is assessed in this study. A systematic comparative assessment
is carried out against results based on a two-dimensional �nite-volume code. The main advan-
tage of the perturbation solution is its ease in implementation, and the low CPU and storage
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Figure 16. Average volume �ow rate plotted against �. Calculations show
that the in�uence of the modulation wavenumber and inertia is essentially

absent. The curve in the �gure is essentially universal.

requirement, compared to a full CFD simulation. The in�uence of inertia, modulation am-
plitude and wavenumber is particularly emphasized. It is established that the perturbation is
globally valid to within the highest-order terms kept in the expansion of velocity and pressure
(which, in this case is �2). For instance, it is shown that, for �¡0:15, the two method agree
to within 5% for velocity and pressure, and to within 1% for the critical Reynolds number,
at which �ow separation occurs. Local discrepancies can sometime be higher. The critical
Reynolds number is found to follow a universal behaviour as function of wall amplitude and
modulation.
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